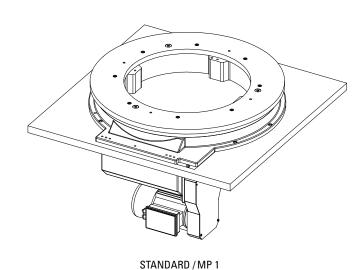
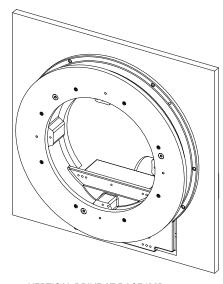

VERSIONS: DRIVE POSITION

DRIVE HOUSING INSIDE/DP 1




DRIVE HOUSING BELOW / DP 2

DRIVE HOUSING OUTSIDE/DP 3

VERSIONS: MOUNTING POSITION

VERTICAL DRIVE AT BASE/MP 2 (only possible for model NR0750A)

GENERAL INFORMATION ON THE MODEL RANGE

- · NR rotary ring table can be operated clockwise, anti-clockwise and also in reversing mode.
- · The NR rotary ring tables are "lubricated for life"!
- · All NR rotary indexing rings can be equipped with servo motors. The size of the motors should be optimally matched to the respective rotary indexing ring configuration so that the drive can never damage the rotary indexing ring.
- · The aluminium rotating ring should be anodised so that the seal at the bottom runs on a low-wear surface.

OPTIONS

- · Possible installation location: vertical rotary axis with output flange at the top
- · Custom installation location, only possible for the NR0750A: horizontal rotary axis with cam housing at the base
- · The 8LSA model range from B+R or the MS2N model range from Bosch Rexroth are available as standard servo motors.
- · It is possible to fit popular alternative motors from various manufacturers.
- · Standard colour: RAL7035 (other colours available on request)

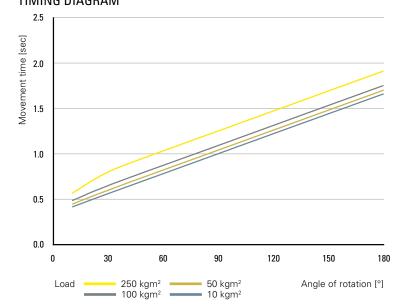
NR 750Z

GENERAL INFORMATION

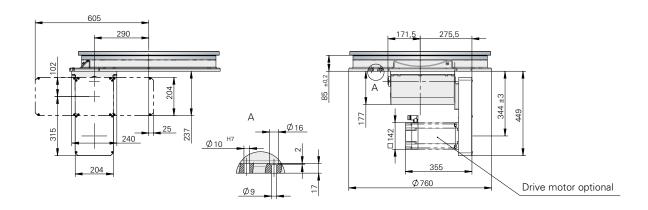
 \cdot Maximum recommended equipment diameter D_{tp} : approximately 1500 mm

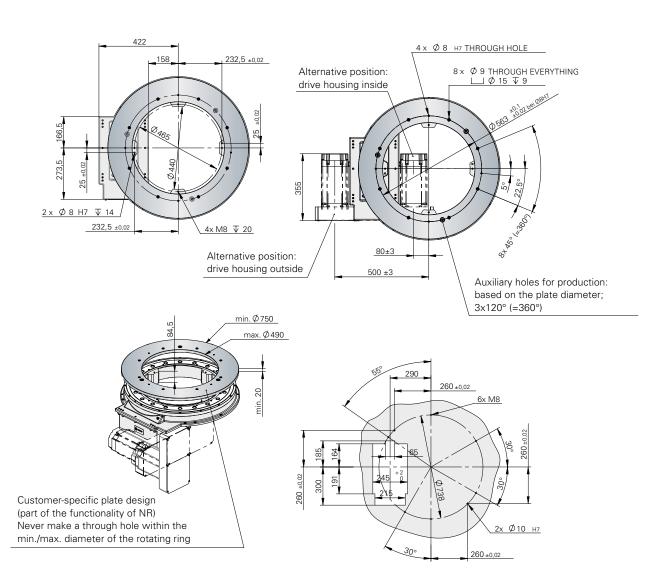
TECHNICAL DATA

n _{2 Max}	Max. output speed:	23 1/min
i _{tot}	Overall gear ratio:	Level K: 90 Level G: 180
	Indexing precision:	36 arcsec (± 18")
A,	Axial run-out of the drive flange:	(at Ø 635 mm) 0.05 mm
A,	Axial run-out, including the rotary ring:	(at Ø 750 mm) 0.07 mm
C,	Concentricity of the output flange:	0.03 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.05 mm
m	Total weight without rotary ring or motor:	230 kg


The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)


M _{2T dyn}	Permitted dynamic tilting moment:	750 Nm
F _{2A dyn}	Permitted dynamic axial force:	7000 N
F _{2R dyn}	Permitted dynamic radial force:	7000 N


Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is 1.4 kgm².

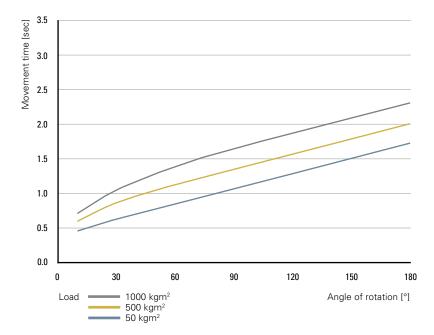
NR 1100Z

GENERAL INFORMATION

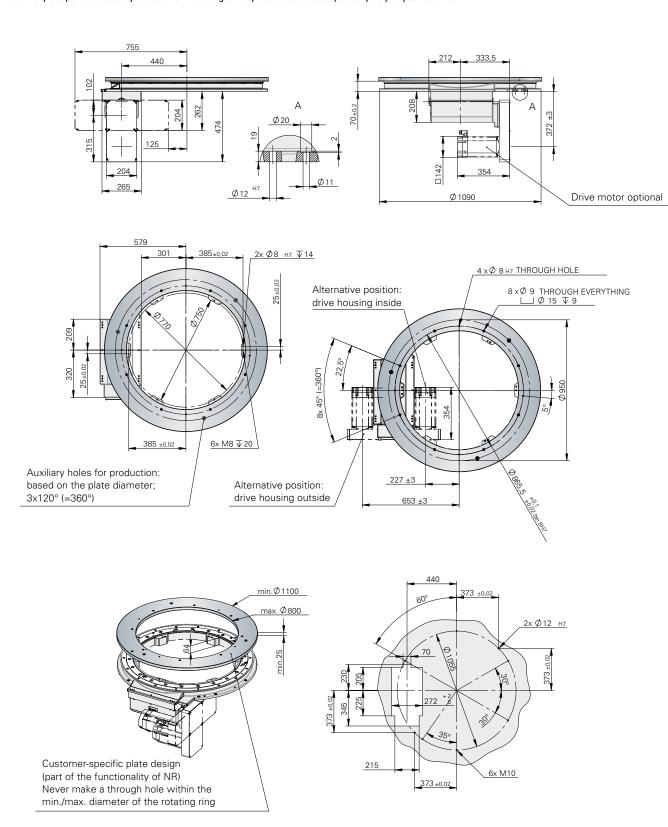
 \cdot Maximum recommended equipment diameter $\mathrm{D_{to}}$: approximately 2200 mm

TECHNICAL DATA

n _{2 Max}	Max. output speed:	23 1/min
i _{tot}	Overall gear ratio:	Level K: 88 Level G: 176
	Indexing precision:	36 arcsec (± 18")
A,	Axial run-out of the drive flange:	(at Ø 945 mm) 0.06 mm
A,	Axial run-out, including the rotary ring:	(at Ø 1100 mm) 0.07 mm
C,	Concentricity of the output flange:	0.04 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.06 mm
m	Total weight without rotary ring or motor:	310 kg


The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)


M _{2T dyn}	Permitted dynamic tilting moment:	2500 Nm
F _{2A dyn}	Permitted dynamic axial force:	12000 N
F _{2R dyn}	Permitted dynamic radial force:	12000 N

Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is 7.0 kgm².

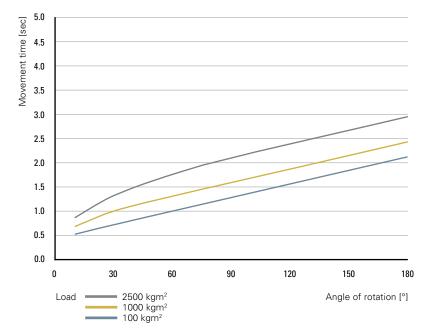
NR 1500Z

GENERAL INFORMATION

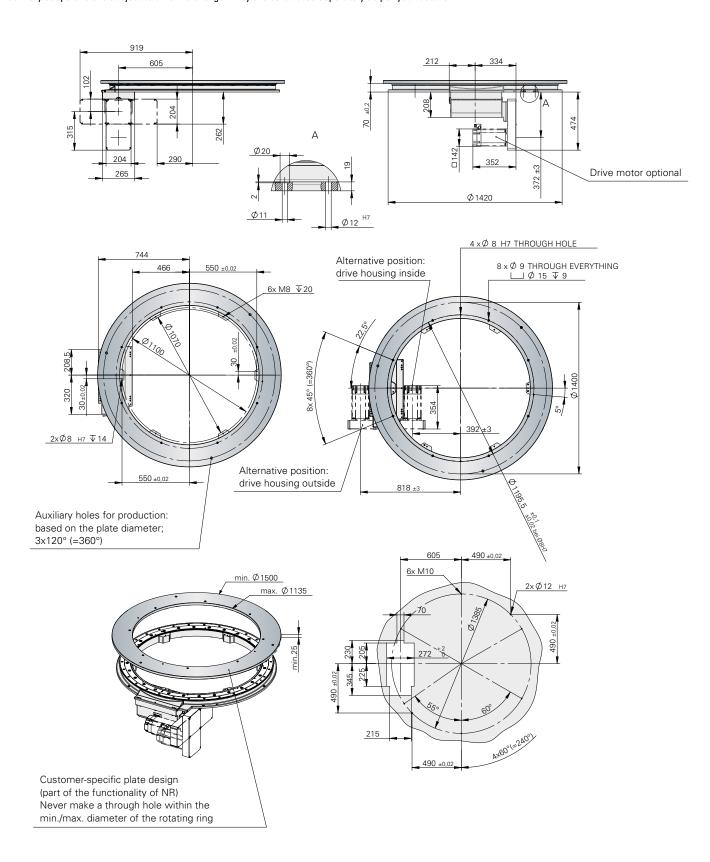
 \cdot Maximum recommended equipment diameter D_{tp} : approximately 3000 mm

TECHNICAL DATA

n _{2 Max}	Max. output speed:	18 1/min
i _{tot}	Overall gear ratio:	Level K: 112 Level G: 224
	Indexing precision:	30 arcsec (± 15")
A,	Axial run-out of the drive flange:	(at Ø 1275 mm) 0.08 mm
A,	Axial run-out, including the rotary ring:	(at Ø 1500 mm) 0.1 mm
C,	Concentricity of the output flange:	0.04 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
m	Total weight without rotary ring or motor:	400 kg


The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)


M _{2T dyn}	Permitted dynamic tilting moment:	3200 Nm
F _{2A dyn}	Permitted dynamic axial force:	16000 N
F _{2R dyn}	Permitted dynamic radial force:	16000 N

Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

The mass moment of inertia of the aluminium rotary ring in standard dimensions is $22.5\ \text{kgm}^2$.

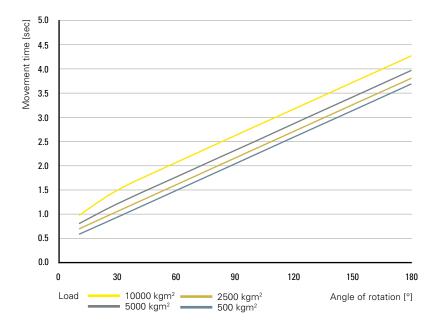
NR 2200Z

GENERAL INFORMATION

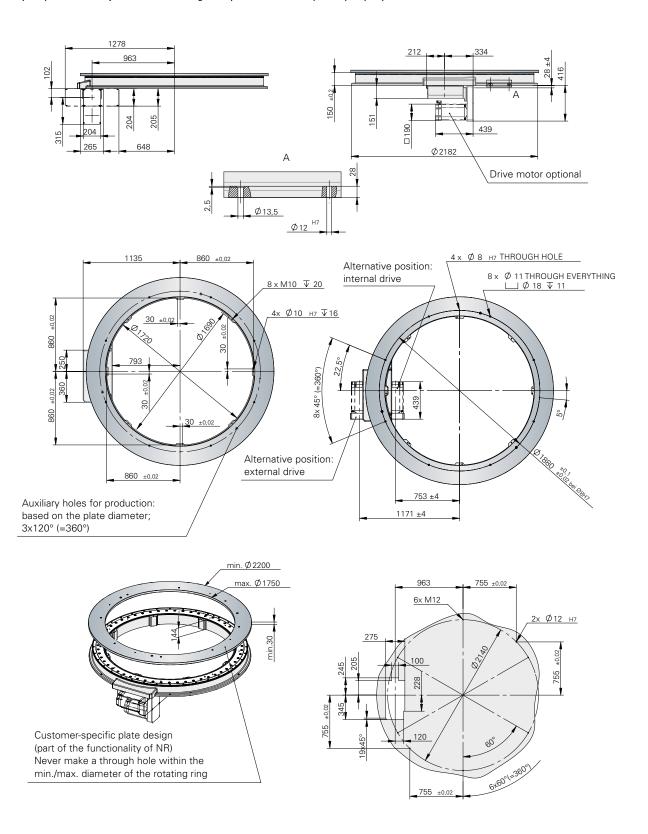
 \cdot Maximum recommended equipment diameter D_{tp} : approximately 4400 mm

TECHNICAL DATA

		241
n _{2 Max}	Max. output speed:	9 1/min
i _{tot}	Overall gear ratio:	Level K: 220 Level G: 440
	Indexing precision:	24 arcsec (± 12")
A,	Axial run-out of the drive flange:	(at Ø 1990 mm) 0.08 mm
A _r	Axial run-out, including the rotary ring:	(at Ø 2200 mm) 0.15 mm
C,	Concentricity of the output flange:	0.05 mm
P	Parallelism between the output flange and screw-on surface of the housing:	0.08 mm
m	Total weight without rotary ring or motor:	950 kg


The values stated for axial run-out and concentricity can only be achieved with precise mounting surfaces.

LOAD DATA (for the output flange)


M _{2T dyr}	Permitted dynamic tilting moment:	4500 Nm
F _{2A dyn}	Permitted dynamic axial force:	30000 N
F _{2R dyn}	Permitted dynamic radial force:	30000 N

Combined loads and permitted process forces only after inspection by WEISS.

TIMING DIAGRAM

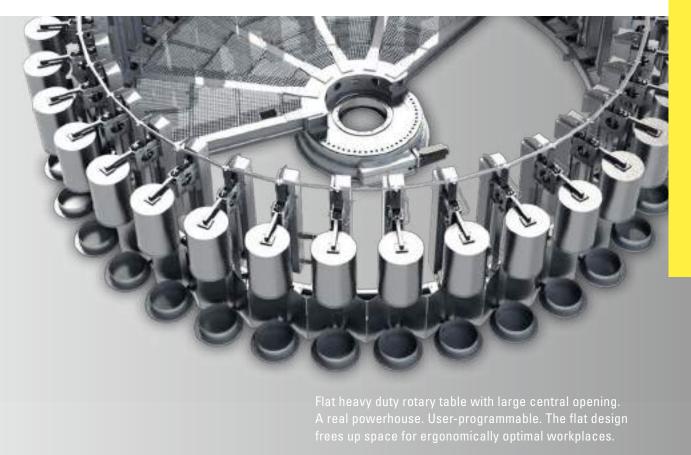
The mass moment of inertia of the aluminium rotary ring in standard dimensions is 111.7 $\mbox{kgm}^2.$

CR/TH HEAVY DUTY ROTARY TABLE: MAKES LIGHT WORK OF HEAVY LOADS

FOR HORIZONTAL AXES

User-programmable rotary barrel drive of the TH range for horizontal loads and high breakdown torque levels. With screw-on surfaces for Buhl pinning and optional rotary encoder.

FREELY AND INTUITIVELY PROGRAMMABLE


 $\label{eq:ware:secure} W.A.S.\ 2-WEISS\ Application\ Software:\ secure\ and\ fast\ commissioning\ with\ free-of-charge\ user\ software.$

THE TECHNOLOGY MAKES THE DIFFERENCE

The cam drive, positioned far toward the outside, enables the highest precision and dynamic performance.

This cooling carousel at one of Cirex's casting stations in the Netherlands has a diameter of 10 metres and weighs 30 tonnes. It is driven by a CR. A special bearing has been fitted to handle the high tilting moment as a result of the uneven load.

ADVANTAGES

- · Extremely flat design
- Large central opening for optimum feed-through of supply cables
- · Extremely smooth and quiet running (<70 dBA)
- · Splashproof
- · Covered gaskets for protection from welding sparks
- The flexible motor flange principle makes it easy to connect third-party motors
- Maximum power transmission with zero backlash thanks to multiple cam rollers that are tensioned against one another and meshed
- · positioning and repeatablility accuracy
- · CR range with available manual hand crank
- · Impressive price-performance
- Mounted on high-precision needle bearings to handle the heaviest loads in both the axial and radial direction
- Permanent status monitoring through W.A.S. 2 WEISS Application Softwaremit unserem Standard-Steuerungspaket

GENERAL INFORMATION

- CR/TH heavy duty rotary indexing tables are user-programmable
- · CR/TH heavy duty rotary indexing tables are "lubricated for life"!
- Freely accessible square shaft available for attaching a handwheel or hand crank (except on CR0400 model).

OPTIONS

- · Possible installation location: vertical rotary axis (please consult WEISS for overhead or other installation positions).
- Additional rotary encoder option: standard manufacturer Heidenhain, type ROQ 425 with the EnDat 2.1 interface (other types or manufacturers available on request).
- For a surcharge, a positioning accuracy measurement report can also be drawn up and a compensation table incorporated for error compensation in a further step. However, this requires a mechanical zero point alignment.
- · Standard colour: RAL7035 (other colours available on request)